×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

This paper presents a tractable framework for data-driven synthesis of
robustly safe control laws. Given noisy experimental data and some priors about
the structure of the system, the goal is to synthesize a state feedback law
such that the trajectories of the closed loop system are guaranteed to avoid an
unsafe set even in the presence of unknown but bounded disturbances (process
noise). The main result of the paper shows that for polynomial dynamics, this
problem can be reduced to a tractable convex optimization by combining elements
from polynomial optimization and the theorem of alternatives. This optimization
provides both a rational control law and a density function safety certificate.
These results are illustrated with numerical examples.

Click here to read this post out
ID: 1101; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 17, 2023, 7:36 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 1087
CC:
No creative common's license
Comments: